Land Contamination Correction for Passive Microwave Radiometer Data: Demonstration of Wind Retrieval in the Great Lakes Using SSM/I

JOHN XUN YANG
Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

DARREN S. MCKAGUE AND CHRISTOPHER S. RUF
Space Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

(Manuscript received 4 December 2013, in final form 29 July 2014)

ABSTRACT

Passive microwave radiometer data over the ocean have been widely used, but data near coastlines or over lakes often cannot be used because of the large footprint with mixed signals from both land and water. For example, current standard Special Sensor Microwave Imager (SSM/I) products, including wind, water vapor, and precipitation, are typically unavailable within about 100 km of any coastline. This paper presents methods of correcting land-contaminated radiometer data in order to extract the coastal information. The land contamination signals are estimated, and then removed, using a representative antenna pattern convolved with a high-resolution land–water mask. This method is demonstrated using SSM/I data over the Great Lakes and validated with simulated data and buoy measurements. The land contamination is significantly reduced, and the wind speed retrieval is improved. This method is not restricted to SSM/I and wind retrievals alone; it can be applied more generally to microwave radiometer measurements in coastal regions for other retrieval purposes.

1. Introduction

Satellite-borne passive microwave radiometers have been widely used in meteorology and climate studies (Ulaby and Long 2014). In the open-ocean, retrieval products, such as winds, water vapor, precipitation, wet path delay, and sea ice, have been developed. However, in coastal ocean areas or inland lakes and rivers, products are often omitted. For example, Fig. 1 shows Special Sensor Microwave Imager (SSM/I)-derived wind speeds from standard products of the National Oceanic and Atmospheric Administration’s (NOAA) Center for Satellite Application and Research (STAR; http://manati.star.nesdis.noaa.gov), where coastal regions, including the Great Lakes, show no retrievals. These limitations also exist in the SSM/I water vapor and rain-rate products. The lack of retrieval products is due to the relatively large footprint of SSM/I radiometers that covers both land and water within a coastal field of view (FOV). The additional land signals make retrievals over water using standard open-ocean algorithms invalid. This phenomenon is often referred to as land contamination. To further illustrate the land contamination problem, Fig. 2 shows an example of the observed brightness temperature (TB) by SSM/I over the Great Lakes. Coastal areas of all lakes are contaminated: in particular, the SSM/I footprint extends across all of Lake Ontario, so that all of the lake data are contaminated. Because of land contamination, coastal data have to be discarded without applying any retrieval. However, coastal data contain important information on various physical parameters. For example, the series of SSM/I instruments have documented more than two decades of historical data that could provide useful climatology information for coastal regions.

In the past, approaches for correcting land contamination have been reported by other researchers. The main strategy involves two steps toward extrapolating coastal information: first, various techniques have been
proposed to remove the land signal from the total signal; next, existing over-ocean algorithms are applied to the corrected data to do retrievals. For example, correction methods were investigated and data after correction were used for retrieving water vapor in the Baltic Sea (Bennartz 1999), wind speed near Britain (Bellerby et al. 1998), coastal wet path delay (Desportes et al. 2007), and sea ice concentration (Maaß and Kaleschke 2010). This two-step strategy is physically clear and straightforward, corrections are based on measured data and do not need additional simulation from a radiative transfer model (RTM), and existing over-ocean algorithms for retrieving physical parameters do not need to change.

Although previous approaches have shown promising results, many issues still need to be addressed. First, reported corrections at times show significant inconsistencies. For example, the corrected TBs should be of comparable magnitude in the same region; however, variations between the highest and lowest TBs are at times larger than 20 K (Bennartz 1999), which suggests the need to further improve the correction method. Second, our analysis indicates that the difference in corrected TBs can be larger than 10 K between different approaches (Bellerby et al. 1998; Bennartz 1999; Desportes et al. 2007), indicating the necessity to validate those approaches and to reconcile their differences. Detailed
comparison results are shown below. Third, error sources affecting correction have not been completely considered. For example, spacecraft navigation errors directly affect the estimation of land signals; however, such errors were ignored or assumed to be static previously, and this would produce significant errors in the corrected data. Furthermore, the antenna pattern was typically approximated using a Gaussian pattern (Bennartz 1999; Desportes et al. 2007; Drusch et al. 1999; Maaß and Kaleschke 2010). Our analysis found that this is a poor approximation that does not have sidelobes. In coastal regions, using an inappropriate antenna pattern can result in larger errors than in the open ocean, since TBs are quite different between land and water. Last, the quality of corrected data was not well validated—both removing land-contaminated TBs and retrieval algorithm tuning were often implemented to improve the quality of products near land. When only showing the retrieval products, it is unclear from which the improvements come. In general, there should be two validations. The first is for the corrected TB, which can be compared with simulated TBs over water using the RTM. This validation is important because the quality of corrected TBs is the most important aspect of the correction method; however, it was not presented in previous studies (Bellerby et al. 1998; Bennartz 1999; Desportes et al. 2007; Maaß and Kaleschke 2010). A second validation should confirm the retrieved physical parameters from the corrected data with independent observations (Bennartz 1999; Desportes et al. 2007; Maaß and Kaleschke 2010). It is insufficient to solely implement the second validation, because retrieval algorithms are often tuned to match observations to compensate for TB errors.

In this study, we examine methods for correcting land contamination. Different techniques are studied and the optimal method is proposed. The corrected TBs are analyzed and validated with simulated TBs. The application of the corrected data is demonstrated using a wind retrieval algorithm and validated with surface buoy measurements. It is shown that the method produces well-corrected coastal retrievals. The retrieved wind speed is validated with reference buoy measurements. These results indicate that the proposed land contamination correction method can be used to obtain coastal information that would otherwise be absent and thus fill a gap in current standard retrieval products.

2. Methodology and algorithms

A flowchart describing the overall approach of the land contamination correction algorithm is shown in Fig. 3. The algorithm consists of three parts: geolocation corrections, land fraction estimation with an appropriate antenna patterns, and contamination removal. A dataset with accurate geolocation is necessary, from which the fraction of land contamination is calculated using a high-resolution land–water mask convolved with a realistic antenna pattern. The land signal can then be removed using the correlation of multiple measurements around the FOV.

a. Geolocation correction

Geolocation correction relates to the spacecraft ephemeris (its 3D position of latitude, longitude, and altitude as a function of time), attitude (roll, pitch, and yaw position), and the projection of the radiometer antenna pattern onto the Earth’s surface. Without proper geolocation, the position of the FOV and Earth incident angle (EIA) will have large errors, which affects any subsequent analysis. For example, geolocation error can propagate into calculated land fractions and result in
overestimating or underestimating land signals. Although preliminary geolocation examination is often provided with standard radiometer data products, it is often not accurate enough, and more thorough processing is needed (Berg et al. 2013; Poe and Conway 1990). In coastal regions, accurate geolocation is more important than over the open ocean because land and water TBs are quite different, such that small errors from geolocation will lead to large errors in the TB correction. Although this problem was suggested as an important error source in the past, no specific solutions have been applied (Bellerby et al. 1998; Bennartz 1999; Desportes et al. 2007; Maass and Kaleschke 2010).

Geolocation correction can be implemented by examining the coastline shift, since land and water have significant TB contrast. Ground coordinates of data can be aligned by matching the coastline between the TB map and an accurate map of the land–water mask. Furthermore, parameters of spacecraft attitude can be retrieved and used to calculate the correct ground coordinates. For SSM/I, this coastline-based approach reduces geolocation uncertainties from 20–30 to 10–12 km relative to onboard telemetry/ephemeris (Poe and Conway 1990). More recent methods further improve geolocation accuracy to uncertainties of less than 5 km and reduced EIA uncertainty from 0.5° to 0.1° (Berg et al. 2013). A brief introduction is given about the technique (Berg et al. 2013). The 85h channel was used to examine coastline shift. It has the smallest footprint among SSM/I channels and has larger land–water contrast than 85v, since emissivity difference between land and water is larger for the horizontal polarization channel (H-pol) than the vertical polarization channel (V-pol). Ascending and descending orbits are separated to examine coastline shift. The coasts of Australia and Japan can be used to check west–east and north–south directions. In addition, 19v and 37v are used to examine spacecraft attitude and distinguish roll and yaw, because V-pol is more sensitive to EIA change than H-pol.

An illustration of the impact of geolocation error is shown in Fig. 4. A geolocation displacement of 5 km is assumed, and the corresponding error impacting the correction is shown as a function of the land fraction. Quantitative details for calculating the error can be found in the following section. Qualitatively, the error comes from either overestimation or underestimation of the land fraction, depending on whether the displacement is toward or away from the land. In either case, the error increases with the land fraction. For example the TB error exceeds 20 K at a land fraction of 0.5 for a 5-km displacement. The analysis indicates that a data-set of very high-quality geolocation is important. In this study, we used the latest dataset from Colorado State University with its geolocation corrections applied (Berg et al. 2013). It should be noted that Fig. 4 is for single footprint analysis, whereas using multiple pixels is different because it can tolerate larger error. We will compare the two different methods later.

b. Land contamination correction: Calculating land fraction using proper antenna pattern

Land contamination correction refers to the process of removing the land signal from the measured TB. The measured TB can be written as

$$TB = f_{\text{Land}} TB_{\text{Land}} + (1 - f_{\text{Land}}) TB_{\text{Water}}, \quad (1)$$

where TB_{Land} and TB_{Water} are the TBs of land and water, respectively. Term f_{Land} is computed as the convolution

![Flowchart of the land contamination correction algorithm](Fig. 3)
of the land mask and the antenna pattern. Term f_{Land} can be written in the latitude and longitude x–y coordinate as

$$f_{\text{Land}}(x,y) = \frac{\int A(x,y) M(x,y) \, dx \, dy}{\int A(x,y) \, dx \, dy}, \quad (2)$$

where $A(x,y)$ is the antenna pattern; $M(x,y)$ is the land–water mask, which is 1 for land and 0 for water; and the limits of integration are defined by an ellipse having major and minor axes aligned with the V- and H-pol principal planes of the antenna pattern and extending out about 3 times the 3-dB beamwidth in each principal plane.

It is important to use an antenna pattern that can accurately approximate the real one. In (2), the antenna pattern is used to calculate the land fraction f_{Land}. In the past, a Gaussian-shaped antenna pattern was used because it is mathematically simple and shows a small difference from the actual antenna pattern within the 3-dB beamwidth (Bennartz 1999; Desportes et al. 2007; Drusch et al. 1999; Maaß and Kaleschke 2010). A Gaussian-shaped antenna pattern can be described by

$$A(x,y) = \exp \left[-4 \ln(2) \frac{x^2}{w_1^2} + \frac{y^2}{w_2^2} \right], \quad (3)$$

where w_1 and w_2 are the two 3-dB beamwidths in the along-track (E plane) and cross-track (H plane) directions, respectively.

However, the real antenna pattern is not Gaussian shaped (Colton and Poe 1999; Hollinger et al. 1990). It has apparent sidelobes that cannot be captured by Gaussian function. In coastal studies, a typical land TB is about 280 K, and therefore a 1% change at the footprint edge in computing land fraction can result in a 2.8-K difference. It is necessary to use the right antenna pattern so that it can well reproduce the real one. The antenna pattern of parabolic reflectors such as SSM/I can be better approximated using a Bessel function (Galindo-Israel and Mittra 1977; Hung and Mittra 1983; Mittra et al. 1979; Rahmat-Samii and Galindo-Israel 1980). Figure 5 shows the difference between Gaussian- and Bessel-shaped patterns, where the antenna patterns correspond to the along-track direction of the footprint shown in Fig. 2. The two patterns show a relatively good match within the 3-dB beamwidth, but the difference increases significantly outside of it. The power fractions show that the Gaussian pattern attributes more weight to sidelobes beyond 0.93 times the 3-dB beamwidth. Consequently, the land contamination–corrected TB is colder because of overestimation of land signals in the sidelobes.

In Fig. 6, the on-orbit-estimated SSM/I antenna pattern is compared with Bessel and Gaussian function models. The estimated SSM/I antenna pattern is from Hollinger et al. (1990). In their paper, they show antenna patterns at 37 GHz, which are derived from coastline overpasses. Figure 6 shows Hollinger et al.’s estimate of the along-track antenna patterns for V and H as blue lines. In contrast, modeled antenna patterns from Bessel and Gaussian are shown as red and green lines, respectively. The left panel in Fig. 6 shows that the Bessel function captures the sidelobe locations, particularly for H-pol. The Gaussian antenna pattern model does not produce any sidelobes. The other two panels show the cumulative difference between (model minus estimate integrated over ground-track distance) SSM/I antenna pattern estimates and models for H-pol and V-pol, respectively. This difference is significantly smaller for the
Bessel function than for the Gaussian. A few minor points are 1) Hollinger et al.’s antenna pattern estimates have uncertainties, having been derived from coastline overpasses; and 2) we show comparison for the along-track patterns, which correspond closely to the instrument instantaneous field of view (IFOV), while cross-track antenna patterns are more accurately represented by the effective field of view (EFOV), for which the IFOV needs to be convolved during instrument integration time. We will discuss this effect later.

Our quantitative analysis in section 3b shows that using the Gaussian antenna pattern results in significant errors that should not be neglected. The Bessel function-based antenna pattern can be described by

\[A(r) = 47.9985 \frac{J_3(r)}{r^3}, \]

where \(J_3(r) \) is a third-order Bessel function of the first kind, \(J_3(r) = \sum_{k=0}^{\infty} (-1)^k \left(\frac{2^{2k+3} k!}{2^{k+1} (k+3)!} \right) r^{2k+3} \), and \(r \) is given by

\[r = \left(\frac{s}{\sqrt{x^2/w_2^2} + \sqrt{y^2/w_2^2}} \right)^{1/(2k+3)}, \]

where \(s \) is a scale constant, \(s = 0.5/3.2106 \). The argument to the Bessel function is scaled so that its 3-dB beamwidth in both principal planes matches that of the actual antenna pattern. In this study, we use the 3-dB beamwidths from the paper (Hollinger et al. 1990). Beam information for V and H of each channel of SSM/I is given. For example, the 3-dB beamwidths are 24.25 and 24.35 km at the cross-track direction for 37 V and H, respectively.

Fig. 5. The antenna patterns and power fractions from Bessel and Gaussian modeling. The antenna patterns correspond to the along-track principal plane at 19v. The patterns differ significantly in the sidelobes. They overlap at about 70 km (0.93 times the half-power beamwidth). At 3 times the 3-dB distance, the central power fraction is larger than 0.99 for Bessel modeling. Gaussian pattern attributes more weight to signals from the sidelobes and affects removing land contamination.

Fig. 6. Comparison between measured and modeled SSM/I antenna patterns. (left) The measured SSM/I antenna patterns at 37 GHz, and V- and H-pol are for the along-track direction derived from coastline overpasses (Hollinger et al. 1990). In contrast, modeled ones from Bessel and Gaussian are presented, respectively. (middle) The difference is obtained by subtracting measured H-pol from models, and the cumulative difference is shown as a function of distance. (right) As in (middle), but for V-pol. Bessel reproduces sidelobes in the right location, particularly for H-pol, and has smaller cumulative differences relative to the Hollinger et al. patterns than Gaussian.
Another point about using an antenna pattern is distinguishing IFOV from EFOV. Antenna patterns corresponding to IFOV using an EFOV beamwidth have been used in past studies (Drusch et al. 1999; Maaß and Kaleschke 2010). However, the recorded TBs correspond to EFOVs. SSM/I integration times are 7.95 ms for 19-, 22-, and 37-GHz channels and 3.89 ms for 85-GHz channels, during which time the footprints move on the ground due to the cross-track scanning nature of the instrument about 25 and 12.5 km, respectively. During the integration time, the IFOV moves to form the EFOV. Figure 7 shows the translation from IFOV to EFOV. The IFOV in the cross-track plane is modeled for the 37v channel. The EFOV is broader than the IFOV in the cross-track plane. Furthermore, the differences between Bessel- and Gaussian-based IFOVs/EFOVs are shown in Fig. 8. As shown in Fig. 6, the Bessel function most closely matches the estimated SSM/I antenna patterns, and as mentioned above the EFOV is the most appropriate field of view for the cross-track plane; thus, the Bessel function EFOV is the reference to which the other options are compared. In the along-track direction, IFOV almost equals EFOV (Hollinger et al. 1990).

c. Land contamination correction: Removing land signals

There are three major error sources when removing land contamination. As in (1), the first error comes from using inaccurate f_{Land}, which relates to the geolocation displacement and inappropriate approximation of the antenna pattern. The second error source is the use of a land–water mask with too coarse resolution. Third, the inhomogeneity of land and water TB affects the correction. A necessary condition for making (1) valid is that TB_{Land} and TB_{Water} should be constants within the footprint—that is, the land and water should be homogeneous. If homogeneity is not satisfied, then one solution is to break the land and water areas up into subareas so that homogeneity is met within each subarea. A simpler way is to treat water areas as homogeneous and to divide land areas into different types, such as forest, urban area, soil, etc. Nevertheless, the correction becomes
more difficult and complicated. Therefore, examining the homogeneity, and properly modeling inhomogeneity when necessary, is important.

Regarding land signal removal, we first consider the strengths and limitations of previous approaches. One option is the use of an analytical function for the correction, which assumes that the coastline is straight and the footprint track is perpendicular to it (Desportes et al. 2007). An analytical function, including error function, can then be used. This is computationally inexpensive. However, the method is not sufficiently accurate in estimating the land signal compared to calculating the land area (Desportes et al. 2007). Another approach is based on calculating the land area and using the single pixel correction (SPC) approach (Bennartz 1999; Desportes et al. 2007; Maas and Kaleschke 2010). SPC calculates the area fraction of land signals and then applies a correction to each footprint/pixel one by one. Term T_{BLand} is estimated by selecting TB measurements with very large values for f_{Land}. Then, for each measured TB, TB_{Water} can be solved using (1). This correction strategy has the advantage of simplicity. However, it can suffer from large errors. The correction is vulnerable to the variation of selected TB, because land is often more inhomogeneous than water and TB_{Land} therefore has a larger variance. Furthermore, in order to use a TB of large land fraction, the pixel needs to be away from the coast and thus may not well represent actual coastal TB_{Land}. The error in TB_{Water} from the SPC method increases significantly with f_{Land}. By rearranging (1), we have $TB_{Water} = (TB - f_{Land}TB_{Land})/(1 - f_{Land})$, where the term $1/(1 - f_{Land})$ becomes very large when f_{Land} gets close to 1, such that any small error in f_{Land} can result in larger errors. Thus, the SPC approach is sensitive to small errors. Another previous approach is to use multiple measurements to solve for the two unknowns, TB_{Land} and TB_{Water}. The two unknowns can be solved using an overconstrained system of equations of the form of (1). For example, Bellerby et al. (1998) used nine pixels of TBs to solve for TB_{Water}. This approach has several advantages: 1) it is not necessary to directly estimate TB_{Land}; 2) the correction is not sensitive to the uncertainty of a single pixel and reduces the impact of measured TB variability; and 3) it makes use of the spatial correlation between adjacent pixels, since either land or water TBs with a small area are relatively homogeneous. Technically, pixels of relatively small f_{Land} can be used to help solve adjacent pixels of large f_{Land}.

Two factors need to be investigated when using the multiple pixel technique. The first is homogeneity and spatial correlation. It is necessary to ensure that TB_{Land} and TB_{Water} do not vary significantly; otherwise, it is difficult to solve for them. The second involves choosing an adequate number and combination of pixels, which is, in turn, related to the first factor. Using too few pixels makes the solution similar to that of the SPC method and reduces its advantages. On the other hand, the homogeneity condition cannot be met when using too
many pixels. In particular, the number of land pixels is important because land is more inhomogeneous and can introduce larger errors.

We adopt the multipixel technique in our approach. The first thing is defining a single footprint. For a single IFOV footprint, more than 99% received power from when Earth is within an ellipse of 3 times the 3-dB beamwidth as shown in Fig. 5. An antenna pattern correction algorithm, including correction for spillover, has already been applied to the TB data. Therefore, we use this size for defining a single IFOV footprint. Furthermore, we examined the size impact by computing the land fraction for more than 100,000 samples over Lake Ontario in March 2006 using 3 times the 3-dB beamwidth, where the mean is 0.7353, 0.7353, 0.7345, 0.7326, and 0.7326 for 19v, 19h, 22v, 37v, and 37h, respectively. Modeling the antenna pattern out to 3.5 times the 3-dB beamwidth yields mean land fractions of 0.7355, 0.7355, 0.7347, 0.7327, and 0.7327, respectively. Given a typical land TB of 280 K and a typical lake TB of 220 K at 37v, this translates to an error of 0.056 K for a single pixel, which is negligible. Thus, 3 times the 3-dB beamwidth is adequate for a single footprint size for our land contamination correction purposes.

About the number of multiple pixels, we combine pixels within a circle with a diameter of 3 times the 3-dB beamwidth with respect to the center pixel to remove land contamination. This is the area from which a single footprint receives Earth radiation. We have done both a case study and statistical analysis to examine the impact of using different sizes and numbers of pixels. (An example illustrating the difference of using an appropriate number of pixels is shown in Figs. 11–13, and statistical difference from analyzing annual data is presented in Tables 3 and 4; see below.) It should be pointed out that using multiple pixels will degrade the product resolution. Specifically, the effective resolution is degraded by a factor of 3 times when using multiple pixels within 3 times the 3-dB beamwidth. The degradation depends on the area of the multiple pixels.

A least squares minimization method is used to estimate the two unknown parameters, TB\text{Water} and TB\text{Land}, in the multipixel approach. Using (1), each TB measurement can be expressed as

\[TB = TB\text{Water} + f\text{Land}(TB\text{Land} - TB\text{Water}). \]

Given \(n > 2 \) measurements of TB with varying levels of land contamination, and assuming the same values for TB\text{Water} and TB\text{Land} in each case, (5) can be rewritten as an overconstrained system of equations given by

\[y = Fx, \]

where

\[y = \begin{bmatrix} TB_1 \\ \vdots \\ TB_n \end{bmatrix}, \quad F = \begin{bmatrix} (1 - f\text{Land})_1 & f\text{Land}_1 \\ \vdots & \vdots \\ (1 - f\text{Land})_n & f\text{Land}_n \end{bmatrix}, \quad \text{and} \]

\[x = \begin{bmatrix} TB\text{Water} \\ TB\text{Land} \end{bmatrix}. \]

The ordinary least squares (OLS) estimate for \(x \) given \(y \) minimizes the cost function \(||y - Fx||^2 \), with the solution

\[x_{\text{OLS}} = (F^T F)^{-1} F^T y. \]

The OLS solution can be overly sensitive to the presence of outliers in the measurement vector \(y \). In our case, significant outliers are introduced by the presence of rain, clouds, and inhomogeneous ground surfaces in the measurements. Alternative regression methods, which reduce the sensitivity to outliers, have been proposed such as the generalized linear model (Meissner and Wentz 2004) and robust regression (Elsaesser 2006; Huber and Ronchetti 2009). A regression based on the maximum likelihood estimator (MLE) was introduced by Huber (Huber and Ronchetti 2009) and has been developed as a form of robust regression (Elsaesser 2006; Huber and Ronchetti 2009; Street et al. 1988). One efficient computational algorithm to implement such a regression is the iteratively reweighted least squares method.
We adopt the MLE regression and implement it using the IRLS approach. Our computational method is summarized as follows. The MLE cost function to be minimized is a weighted version of the OLS cost function given by

$$
W^{2} (y - Fx)W^{2},
$$

with solution

$$
x_{MLE} = (F^{T}WF)^{-1}F^{T}Wy,
$$

where W is a diagonal matrix of weights. The weights are given by

$$
w_{i} = \frac{\psi(r_{i})}{r_{i}},
$$

where r_{i} is the adjusted residual given by $r_{i} = (y - Fx)/\sigma$ and σ is a scale parameter. Different forms of ψ have been proposed. In this study, we use the bisquare functional form (Elsaesser 2006)

$$
\psi(r) = \begin{cases}
\frac{r^{2}}{1 - r^{2}}, & |r| \leq k \\
0, & |r| > k
\end{cases}
$$

FIG. 10. An example of solving for TB_{Water} over Lake Ontario. (left) The 19v TB image, with blue circles indicating the centers of samples that are within 95 km of the buoy (location indicated by the red dot). (right) MLE regression of TB as a function of the land fraction. Term TB_{Water} is obtained by extrapolation to zero land fraction. The linear regressions have R^2 explained variances of 1.00, 1.00, 1.00, 1.00, and 0.99 for the five SSM/I channels, indicating the robustness of the method. The retrieved TB_{Water} values are 193.84, 130.73, 222.28, 217.26, and 159.91 K at 19v, 19h, 22v, 37v, and 37h, respectively. The retrieval errors (retrieval minus RTM simulation) are 0.29, -1.37, 0.73, 1.13, and 0.99 K, respectively.

FIG. 11. The impact of using too few or too many samples on the quality of the land contamination correction. Both panels show the 19v TB map at the same time. (left) All samples within 40 km of the buoy site; (right) all samples within 200 km. These samples are subsequently used to retrieve TB_{Water}.

(IRLS) method (Jorgensen 2002; Street et al. 1988). We adopt the MLE regression and implement it using the IRLS approach. Our computational method is summarized as follows.

The MLE cost function to be minimized is a weighted version of the OLS cost function given by $||W(y - Fx)||^2$, with solution

$$
x_{MLE} = (F^{T}WF)^{-1}F^{T}Wy,
$$

where W is a diagonal matrix of weights. The weights are given by

$$
w_{i} = \frac{\psi(r_{i})}{r_{i}},
$$

where r_{i} is the adjusted residual given by $r_{i} = (y - Fx)/\sigma$ and σ is a scale parameter. Different forms of ψ have been proposed. In this study, we use the bisquare functional form (Elsaesser 2006)
where k is the bounded range. The IRLS algorithm is implemented by the following steps: 1) an initial estimate is made of \mathbf{x} using (8); 2) the weight matrix \mathbf{W} is computed using (10) and (11); 3) \mathbf{x} is reestimated using (9); and 4) steps 2 and 3 are iterated until convergence is achieved.

In addition to the outlier measurements that are deweighted by the MLE/IRLS approach, we also filter out data with a large deviation from the mean. This is done by requiring that the residual standard deviation of the linear regression be less than 8 K and that the maximum deviation be less than 15 K. (An example of our IRLS implementation is shown in Fig. 10. The difference between using the OLS and MLE approaches is shown in Fig. 14.)

d. Retrieval algorithm implementation and results validation

After obtaining corrected TBs, existing overwater retrieval algorithms can be applied to retrieve physical parameters. In this study, we use data from SSM/I F-13 from 2006. The version used is provided by the recent SSM/I fundamental climate data records (FCDR) processed by Colorado State University (Berg et al. 2013; Sapiano et al. 2013). The FCDR products are intercalibrated for SSM/I sensors F-08, F-10, F-11, F-13, F-14, and F-15 from 1987 to 2009. Each radiometer is intercalibrated with respect to F-13. The geolocation and spacecraft attitude have been improved mainly based on
examining the coastline shift as aforementioned. No resampling technique is applied between the different channels.

An RTM was used to simulate contamination-free TBs to compare with corrected TBs (Kroodsma et al. 2012). This gives a sense of the impact of the correction within the uncertainties of the simulations. These comparisons are done in a relative sense, for example, Great Lakes (land contaminated) data relative to open-ocean data without land contamination. As such, biases in the RTM with respect to absolute reference are not as important as capturing the functional dependence of TBs upon variability in key geophysical parameters (wind speed and lake surface temperature in this case). The RTM assumes 1D parallel layers. The surface emissivity model includes a Meissner and Wentz dielectric constant model (Meissner and Wentz 2004), a Hollinger surface roughness model (Hollinger 1971), a Stogryn foam model (Stogryn 1972), a Wilheit wind speed (Wilheit 1979), and Elsaesser surface models (Elsaesser 2006). The atmospheric absorption model includes Rosenkranz nitrogen (Rosenkranz 1993) and water vapor (Rosenkranz 1998) models, and Liebe liquid water (Liebe et al. 1991) and oxygen models (Liebe et al. 1992). More details can be

FIG. 14. Example of difference between MLE and OLS regressions. (left) The 19v TB map; (middle) regressions from MLE (solid lines) and OLS (dashed lines) regressions, where the two regressions are very close at this scale; (right) fitting-line differences of OLS minus MLE. OLS overestimates TB_{Water} by 0.96, 1.40, 0.80, 0.70, and 0.67 K for 19v, 19h, 22v, 37v, and 37h, respectively. The differences in retrieved TB_{Water} compared to RTM simulation are 3.50, 5.18, 1.01, 1.02, and 5.85 K (OLS), and 2.54, 3.78, 0.21, 0.31, and 5.18 K (MLE) for 19v, 19h, 22v, 37v, and 37h, respectively.

FIG. 15. Comparison between our method and the SPC method. (left) Term TB_{Water} as a function of land fraction. Data are from 29 Nov 2006. Term TB_{Water} shows inconsistency and varies significantly with land fraction. Errors can exceed 100 K with land fraction larger than 0.8. Even for land fraction less than 0.5, TB_{Water} can vary more than 50 K. (right) Difference with respect to simulation, where the mean TB_{Water} values have differences of −4.03, −8.45, −2.82, 0.22, and −0.78 K, while the regression based method has differences of 0.29, −1.37, 0.73, 1.13, and 0.99 K (Fig. 10) for the five channels, respectively.
found in Kroodsma et al. (2012). The emissivity model we use can account for salinity, where we use 34 ppt for ocean and 0 ppt for the Great Lakes. However, note that the impact of salinity on water surface emissivity is most significant for frequencies lower than 5 GHz (Wilheit 1979). Figure 9 shows the impact of salinity on TB using the emissivity model we use. It shows that salinity impact is negligible above 5 GHz and thus does not affect modeling SSM/I (lowest frequency of 19.35 GHz). The input geophysical parameters for the simulation come from the surface properties and atmosphere profiles from 6-h Global Data Assimilation System (GDAS) fields with a spatial resolution of 1° × 1°. A land–water mask with a resolution of about 250 m (0.002°) has been used (Carroll et al. 2009). Because using a high-resolution mask increases computational expense, we degrade this to 1 km (0.008°) by averaging the mask. Based on sensitivity studies using both original and degraded masks to compute land fraction, the difference of degrading the land-mask resolution on the computed TBs is of order 0.2°, which is negligible.

A regression-based wind retrieval method for the open ocean was used (Goodberlet et al. 1989). No parameters were tuned in the wind retrieval algorithm, because tuning the retrieval algorithm compromises its utility for validating the robustness of a land correction. Rain contamination was removed using a rain filter (Stogryn et al. 1994). The retrieved wind was validated using surface buoy measurements provided by the National Data Buoy Center (NDBC) (Meindl and Hamilton 1992; http://www.ndbc.noaa.gov). The buoy data have a temporal resolution of 1 h. A buoy site in the center of Lake Ontario is used (43.619°N, 77.405°W). Because Lake Ontario has the smallest surface area among the five lakes and thus is the worst lake in terms of land-contaminated TBs, we choose it to examine the capability of our method. This buoy site has a mean wind speed of 5.96 m s⁻¹, a maximum of 21 m s⁻¹, and a variance 9.93 m s⁻¹ in 2006. The SSM/I pixel closest to the buoy site during each overpass is used to compare with the buoy wind, and their time difference is within 1 h.

3. Results

a. Case study of removing land contamination

Figure 10 shows an example of the signal processing of our method. The left panel shows a 19v TB map over Lake Ontario at 2309:14 UTC 29 November 2006. Data over Lake Ontario, the smallest of the Great Lakes, contain the most land contamination. The red dot in the figure denotes the buoy site. The blue circles are centers of nearby pixels within a circle of 190-km diameter. The right panel shows TB as a function of f_{Land}, which has a relationship of $TB = f_{\text{Land}}(TB_{\text{Land}} - TB_{\text{Water}}) + TB_{\text{Water}}$. By applying an MLE regression, TB_{Water} is obtained at zero f_{Land}. The linearity between TB and f_{Land} is quite good with an R^2 of 1.00, 1.00, 1.00, 1.00, and 0.99 for the five channels, respectively. The retrieved values for TB_{Water} are 194.13, 129.36, 221.55, 218.39, and 160.90 K, respectively; while RTM simulations give 193.84, 130.73, 222.28, 217.26, and 159.91 K for 19v, 19h, 22v, 37v, and 37h, respectively. The differences are 0.29, −1.37, 0.73, 1.13, and 0.99 K, respectively. The minimum f_{Land} is approximately 0.2 for channels of 19v, 19h, and 22v, indicating that all TBs over the lake are contaminated. For channels 37v and 37h, the minimum f_{Land} is about 0.015, because higher frequencies have smaller footprints. Nevertheless, MLE is still found to be useful for these
two channels for removal of the small amount of land signal still present. The results show the robustness of our method: the homogeneity in combined pixels is satisfied, due to good geolocation, proper antenna pattern, and robust regression.

The importance of using an appropriate number of pixels to remove land contamination is examined. Examples are illustrated in Figs. 11–13. Figure 11 maps the locations of pixels that are used to apply the land-contamination correction. In the left panel, only pixels within 40 km of the buoy site are used, while in the right panel, a larger number of pixels within 200 km are used. These two sets of pixels are used to retrieve TB\textsubscript{Water}. Figure 12 shows retrieving TB\textsubscript{Water} using the MLE method. The left panel corresponds to using few pixels, where TBs have land fraction less than 0.6. The right panel corresponds to using many pixels, where the effects of land inhomogeneity become significant, such that the

FIG. 17. Comparison between simulated and observed TBs with and without land contamination correction, respectively: (left) uncorrected TBs and (right) corrected TBs. The three rows show the (top) scatterplot, (middle) bias, and (bottom) histogram. After correction, observed TBs show much better agreement with simulations, with reduced bias and variance. Before correction, the mean differences between observation and simulation are 47.88, 82.99, 34.69, 31.80, and 67.16 K, while after correction they are 0.47, 0.20, −1.16, −0.10, and 3.02 K for the five channels, respectively. The standard deviations are 18.05, 31.09, 16.37, 18.78, and 37.19 K before correction vs 3.19, 5.81, 4.16, 4.15, and 8.69 K after correction.
variance of warm TBs increases. For example, warm TBs with a land fraction of larger than 0.98 have maximum differences of 4.16, 7.72, 3.22, 3.70, and 5.60 K for the five channels, respectively. Figure 13 shows the retrieved TB\textsubscript{Water} compared with simulations. In the left panel, using few pixels has differences of 0.34, 2.33, 0.94, 1.14, and 0.40 K for the five channels, respectively. In the right panel, the differences are 1.02, 1.15, 0.08, 1.79, and 2.03 K, respectively. Both cases produce worse results than if the appropriate numbers of pixels is used, as in Fig. 10, where TB differences are 0.29, −1.37, 0.73, 1.13, and 0.99 K, respectively. This reduction in TB differences demonstrates the importance of using an appropriate number of pixels.

The importance of using a robust regression algorithm is next considered. Figure 14 shows the difference
between the OLS and MLE approaches. The left panel shows a 19v TB map; the middle panel shows the MLE (solid lines) and OLS (dashed lines) linear regressions, which overlap in this scale but can be distinguished in the next panel; and the right panel shows the OLS minus MLE regressions. Compared to the MLE regression, the OLS regression overestimates TBWater by 0.96, 1.40, 0.80, 0.70, and 0.67 K for 19v, 19h, 22v, 37v, and 37h, respectively. Their differences with respect to the RTM simulations are 3.50, 5.18, 1.01, 1.02, and 5.85 K (OLS), and 2.54, 3.78, 0.21, 0.31, and 5.18 K (MLE) for the five channels, respectively. Measured TBs often have large deviations in the presence of clouds and rain. The MLE approach reduces the impact of outliers and makes the results more consistent between channels.

b. Comparison with SPC method and Gaussian antenna pattern

Our method is compared with the SPC method in Fig. 15. The data on 29 November 2006 were used. The SPC method estimates TBLand from the TB of the highest \(f_{\text{Land}} \) and then calculates TBWater for each pixel. In Fig. 15, TBWater from the SPC method shows inconsistency; that is, TBWater varies significantly with \(f_{\text{Land}} \), and the errors increase quickly with \(f_{\text{Land}} \). Errors can exceed 100 K when \(f_{\text{Land}} \) is larger than 0.8. Even when \(f_{\text{Land}} \) is less than 0.5, TBWater varies more than 50 K. With respect to the RTM simulation, the mean TBWater has differences of \(-4.03, -8.45, -2.82, 0.22, \) and \(-0.78\) K for the five channels, respectively. In contrast, the MLE method has differences of \(0.29, -1.37, 0.73, 1.13,\) and \(0.99\) K compared to the simulations (as in Fig. 10). Therefore, the SPC method is not practical for removing land contamination.

The importance of using the proper antenna pattern is examined next. Figure 16 shows the difference between using the Gaussian and Bessel antenna patterns. The data are from 29 November 2006. The left panel shows MLE regressions, with filled circles and solid lines from the Bessel pattern and unfilled circles and dashed lines from the Gaussian pattern. The middle panel shows the

Fig. 19. Comparison of (left) buoy-measured wind speed and (right) SSM/I-retrieved wind speed using (left) corrected and (right) uncorrected TBs. Wind speed from corrected TBs shows better agreement with the buoy measurements, with an RMSE of 1.82 m s\(^{-1}\) and a correlation of 0.86. In comparison, previous studies over the open ocean show an RMS difference of 1.9 m s\(^{-1}\) and \(R^2\) of 0.85 (Goodberlet et al. 1989).
fitting-line differences of Gaussian minus Bessel. The right panel shows the TB_{water} differences of $-4.32, -7.07, -2.10, -0.90, \text{ and } -1.77$ K for the five channels, respectively. With respect to RTM simulation, using the Gaussian pattern shows differences of $-4.03, -8.44, -1.37, 0.23, \text{ and } -0.78$ K, while the Bessel pattern shows differences of $0.29, -1.37, 0.73, 1.13, \text{ and } 0.99$ K for the five channels, respectively. The Gaussian pattern attributes more weight to edge signals and thus removes more signals. The Gaussian pattern does not approximate the antenna pattern as well and, as a result, produces much larger errors.

c. Validation of contamination-free TB and retrieved wind speed

The corrected TB_{water} is compared with simulated TBs to test for physical reasonableness. Figure 17 shows the comparison between observed and measured TB for annual data over all of Lake Ontario. There are 10 936 samples for each channel. Measured raw TBs are overall warmer than the simulated values before correction (left side). After correction (right side), the simulated and measured TBs are well aligned in the 1-to-1 solid line (top plot). Both the bias (middle plot) and variance (bottom plot) are reduced. Before correction, TBs are warmer with respect to the simulation by 47.88, 149.98, 67.53, 59.04, and 118.06 K for the five channels, respectively. After correction, TBs have only a small dependence on land fraction. The slope becomes 2.34, 2.64, 3.27, 0.44, and 0.22 K for the five channels, respectively.

It should be noted that comparisons to simulations is not the absolute benchmark for validation. To characterize the magnitude of any simulation biases, TBs were simulated over land-free ocean using the RTM and GDAS profiles and were compared to observations. The comparison was implemented over latitudes of $40^\circ - 50^\circ$ in the Northern Hemisphere; these latitudes are similar to that of the Great Lakes. The simulated and observed data were averaged into $1^\circ \times 1^\circ$ grid boxes and compared. Data with cloud liquid water are eliminated to isolate just surface effects, which are the most relevant to the retrieval of wind speeds. Furthermore, it should be noted that the middle of ocean has sparse in situ observations that limit the accuracy of GDAS atmospheric profiles. Data with large spatial inhomogeneity are filtered out, that is, TBs in the same $1^\circ \times 1^\circ$ grid box

Table 1. Comparison of corrected TB against simulation using different antenna patterns. Bias is raw/corrected TB minus simulated TB. G-IFOV is using a Gaussian function–based IFOV antenna pattern, where SSM/I EFOV widths are the input parameters. G-EFOV is using a Gaussian function–based EFOV. B-IFOV is using a Bessel function–based IFOV antenna pattern. B-EFOV is using a Bessel function–based EFOV. Method B-EFOV gives overall the best results with small bias and standard deviation.

<table>
<thead>
<tr>
<th>TB</th>
<th>Bias</th>
<th>STD</th>
<th>Bias</th>
<th>STD</th>
<th>Bias</th>
<th>STD</th>
<th>Bias</th>
<th>STD</th>
<th>Bias</th>
<th>STD</th>
<th>Open ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>19v</td>
<td>47.88</td>
<td>18.05</td>
<td>-0.51</td>
<td>3.20</td>
<td>-1.05</td>
<td>3.23</td>
<td>1.01</td>
<td>3.15</td>
<td>0.47</td>
<td>3.19</td>
<td>1.10 2.97</td>
</tr>
<tr>
<td>19h</td>
<td>82.99</td>
<td>31.09</td>
<td>-1.53</td>
<td>5.76</td>
<td>-2.42</td>
<td>5.85</td>
<td>1.17</td>
<td>5.70</td>
<td>0.20</td>
<td>5.81</td>
<td>0.47 5.54</td>
</tr>
<tr>
<td>22v</td>
<td>34.69</td>
<td>16.37</td>
<td>-1.56</td>
<td>4.20</td>
<td>-2.02</td>
<td>4.23</td>
<td>-0.68</td>
<td>4.12</td>
<td>-1.16</td>
<td>4.16</td>
<td>0.73 4.93</td>
</tr>
<tr>
<td>37v</td>
<td>31.80</td>
<td>18.78</td>
<td>0.25</td>
<td>4.08</td>
<td>-0.32</td>
<td>4.14</td>
<td>0.51</td>
<td>4.10</td>
<td>-0.10</td>
<td>4.15</td>
<td>-2.79 3.57</td>
</tr>
<tr>
<td>37h</td>
<td>67.16</td>
<td>37.19</td>
<td>3.74</td>
<td>8.51</td>
<td>2.57</td>
<td>8.68</td>
<td>4.26</td>
<td>8.54</td>
<td>3.02</td>
<td>8.69</td>
<td>-0.62 7.67</td>
</tr>
</tbody>
</table>

Table 2. Comparison of wind speed retrieval against buoy using different antenna patterns. Terms as in Table 1. B-EFOV gives overall the best results with large correlation and small RMSE. The numbers for the open ocean are from Goodberlet et al. (1989).

<table>
<thead>
<tr>
<th>Raw</th>
<th>G-IFOV</th>
<th>G-EFOV</th>
<th>B-IFOV</th>
<th>B-EFOV</th>
<th>Open ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>RMSE</td>
<td>R^2</td>
<td>RMSE</td>
<td>R^2</td>
<td>RMSE</td>
</tr>
<tr>
<td>0.71</td>
<td>2.86</td>
<td>0.83</td>
<td>1.97</td>
<td>0.84</td>
<td>1.93</td>
</tr>
</tbody>
</table>
Table 3. Comparison of corrected TB against simulation from using different techniques. The results are from examining annual data using different techniques. The same Bessel-based EFOV antenna pattern is used as with Table 1, but correction techniques are varied: SPC is the SPC method, B is using the Bessel antenna pattern, and S is using a too small area for the multipixel technique (within 40 km to the center pixel). M is using a medium adequate area for the multipixel technique (with 3 times the 3-dB major axis of beamwidth), and L is using a too large area for the multipixel technique (within 200 km to the center pixel). Using the proposed method, B&M&MLE, produces overall the best results with small bias and standard deviation.

<table>
<thead>
<tr>
<th>TB</th>
<th>Raw Bias</th>
<th>SPC Bias</th>
<th>B&S&MLE Bias</th>
<th>B&L&MLE Bias</th>
<th>B&M&OLS Bias</th>
<th>B&M&MLE Bias</th>
<th>Open ocean Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>19v</td>
<td>47.88</td>
<td>18.05</td>
<td>0.59</td>
<td>0.65</td>
<td>0.32</td>
<td>0.47</td>
<td>1.10</td>
</tr>
<tr>
<td>19h</td>
<td>82.99</td>
<td>31.09</td>
<td>0.62</td>
<td>-0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.47</td>
</tr>
<tr>
<td>22v</td>
<td>34.69</td>
<td>16.37</td>
<td>-1.17</td>
<td>-0.73</td>
<td>-1.15</td>
<td>-0.16</td>
<td>0.73</td>
</tr>
<tr>
<td>37v</td>
<td>31.80</td>
<td>18.78</td>
<td>0.20</td>
<td>0.17</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-2.79</td>
</tr>
<tr>
<td>37h</td>
<td>67.16</td>
<td>37.19</td>
<td>2.62</td>
<td>2.82</td>
<td>3.18</td>
<td>3.02</td>
<td>-0.62</td>
</tr>
</tbody>
</table>

with a standard deviation larger than 2 K at each channel. The TB differences (observation minus simulation) are 1.10, 0.47, 0.73, −2.79, and −0.62 K for the five channels, respectively. The standard deviations of TB differences are 2.97, 5.54, 4.93, 3.57, and 7.67 K for the five channels, respectively. This residual error in the open ocean falls into the same order as the land-corrected TBs over the Lake Ontario.

The corrected values for TB_{Water} over Lake Ontario were used for wind speed retrieval and were validated against surface buoy measurements. Figure 19 shows the comparison between buoy and SSM/I retrieved wind speeds. The coincidence data are within 1 h, during which the hourly buoy wind is compare with SSM/I wind from the closest pixel to the buoy. By using the corrected TB, the SSM/I wind speed retrieval is significantly improved, with smaller bias and variance and enhanced correlation. The root-mean-square error (RMSE) is 1.82 m s\(^{-1}\) and the correlation is 0.86. Over the open ocean, previous studies reported an RMSE of 1.9 m s\(^{-1}\) and a correlation of 0.85 when comparing buoy and SSM/I wind speeds (Goodberlet et al. 1989). Note that the retrieved wind speed still has some residual bias and some negative values. This is partly because the retrieval algorithm used here was specifically tuned for the open ocean. Figure 19 has fewer data points than Fig. 18, because the buoy site has limited data where no data are available in winter and SSM/I passes the same place only 2 times per day. We use the residual error in the wind retrievals to estimate the error in the corrected TBs. As an approximation to bound the TB uncertainties, it is assumed that the standard deviation of the TB residual error is equivalent at each channel and that the covariance of any two channels is zero. Then the standard deviation of the TB residual error can be derived from the standard deviation of the wind residual error as

\[
\sigma_{\text{Wind}}^2 = \sum_i a_i^2 \sigma_{\text{TB}_i}^2 = \sigma_{\text{TB}}^2 \sum_i a_i^2, \tag{12}
\]

where \(a_i\) denotes constant parameters in the regression-based wind algorithm. The standard deviation of the wind speed residual error is \(\sigma_{\text{Wind}} = 1.86\) m s\(^{-1}\), and therefore the corresponding standard deviation of TB is obtained as \(\sigma_{\text{TB}} = 0.80\) K for each channel.

We note that there are more state-of-the-art wind retrieval algorithms than the one used here. However, the point in this study is to demonstrate the impact of the land contamination on an example product derived from the corrected TBs, not to produce the most accurate wind speed retrievals. We will study those algorithms and combine different radiometers to produce climatological wind products over the Great Lakes in future work, where it is expected that the improved spatial coverage from multiple satellites will yield valuable information on the cross-lake distributions relative to buoy data alone.

The comparisons between using different antenna patterns are presented in Tables 1 and 2. The two tables come from analyzing the same data in 2006 using different antenna patterns. Table 1 presents the comparison between raw/corrected TBs and simulated TBs, using Bessel-/Gaussian-based IFOV and EFOV antenna.

Table 4. Comparison of wind speed retrieval against buoy using different techniques. Terms as in Table 3. Using the proposed method, B&M&MLE, produces overall the best results with high correlation and small RMSE. The numbers for the open ocean are from Goodberlet et al. (1989).

<table>
<thead>
<tr>
<th>Raw</th>
<th>SPC</th>
<th>B&S&MLE</th>
<th>B&L&MLE</th>
<th>B&M&OLS</th>
<th>B&M&MLE</th>
<th>Open ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2)</td>
<td>RMSE</td>
<td>(R^2)</td>
<td>RMSE</td>
<td>(R^2)</td>
<td>RMSE</td>
<td>(R^2)</td>
</tr>
<tr>
<td>0.71</td>
<td>2.86</td>
<td>0.62</td>
<td>3.56</td>
<td>0.86</td>
<td>1.92</td>
<td>0.80</td>
</tr>
</tbody>
</table>
patterns. The bias is the mean residual of raw/corrected TB minus simulated TB, and the standard deviation (STD) of the residual is also shown. Overall, using the Bessel-based EFOV antenna pattern produces the best results with the smallest bias and standard deviation. Table 2 shows the retrieved wind speed against buoy. Again, the proposed method provides the best wind retrieval against buoy measurements with high correlation and small RMSE.

The comparisons between different correction techniques are shown in Tables 3 and 4. The same Bessel-based antenna pattern is used, but different correction techniques in the aforementioned case study are used to examine all data in 2006 and then results are compared. These different techniques include SPC compared to multipixel, OLS compared to MLE, and using an inadequate number of pixels in the retrieval method compared to using adequate pixels. Table 3 shows the comparison of corrected TB against simulation, and Table 4 presents wind retrieval against buoy. Overall, our proposed method (i.e., Bessel-based EFOV antenna pattern, multiple pixel method with adequate number combination, and MLE regression) produces TBs and wind speeds with the lowest bias and standard deviation/RMSE with respect to simulated TBs and buoy winds, respectively.

4. Conclusions

We have examined methods for correcting land contamination of passive radiometer measurements in order to extract coastal and inland lake information. The method presented in the paper significantly reduces the land contamination, and the corrected TBs show agreement with simulations. The corrected data are used for wind retrieval over the Great Lakes. Our land contamination algorithm uses a Bessel function–based representation of the EFOV antenna pattern, combines an appropriate number of neighboring samples, and uses the maximum likelihood estimator (MLE) regression to remove land contamination. We compare our method with previous approaches and examine the difference between using different techniques. It is found that using an appropriate antenna pattern is important for removing land contamination, and that the Bessel pattern outperforms the Gaussian pattern. The results are much better compared to techniques based on a single pixel correction. However, it should be noted that the resolution is degraded. The example retrievals show improved wind speed with an RMS error of 1.86 m s⁻¹. By using this method, the current lack of information near coasts in standard SSM/I data products can be addressed. This method can be applied to other radiometers in coastal regions for general retrieval purposes.

Acknowledgments. The authors thank Colorado State University for providing the SSM/I Fundamental Climate Data Record (FCDR). We thank the anonymous reviewers for their useful comments.

REFERENCES

