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ABSTRACT

Spaceborne Global Navigation Satellite System reflectometry observations of the ocean surface are found to

respond to components of roughness forced by local winds and to a longer wave swell that is only partially

correlated with the local wind. This dual sensitivity is largest at low wind speeds. If left uncorrected, the error in

wind speeds retrieved from the observations is strongly correlated with the significant wave height (SWH) of the

ocean.ABayesian wind speed estimator is developed to correct for the long-wave sensitivity at lowwind speeds.

The approach requires a characterization of the joint probability of occurrence of wind speed and SWH, which is

derived fromarchival reanalysis sea-state records. TheBayesian estimator is applied to spaceborne data collected

by the Technology Demonstration Satellite-1 (TechDemoSat-1) and is found to provide significant improvement

inwind speed retrieval at lowwinds, relative to a conventional retrieval that does not account for SWH.At higher

wind speeds, the wind speed and SWH are more highly correlated and there is much less need for the correction.

1. Introduction

Spaceborne remote sensing observations have been

used to estimate near-surface wind speed over the

ocean since the 1970s. The two most mature methods

are radar scatterometer measurements of the ocean

surface backscatter (Grantham et al. 1977; Jones 1982)

and microwave radiometer measurements of ocean

surface thermal emission (Njoku et al. 1980; Pandey

1987). In the first case, the backscatter is sensitive to

roughening of the surface by the wind (Wentz et al.

1984). In the second case, the emissivity is sensitive to

both surface roughness and the fractional coverage of

the surface by wind-driven foam (Stogryn 1967;

Nordberg et al. 1971). More recently, spaceborne

measurements of ocean surface forward scatter by a

Global Navigation Satellite System reflectometry

(GNSS-R) bistatic radar have also been shown capable

of estimating the near-surface ocean wind speed

(Gleason et al. 2005; Clarizia et al. 2014; Foti et al. 2015;

Li et al. 2016). SpaceborneGNSS-R for retrieval of wind

speed and other parameters has been successfully

demonstrated following a large number of airborne

demonstrations (e.g., Garrison et al. 2002; Germain

et al. 2004; Katzberg et al. 2001, 2006; Katzberg and

Dunion 2009; Rodriguez-Alvarez et al. 2013), similar to

the series of airborne scatterometer experiments that

preceded satellite scatterometry.

For radar observations, the ocean surface scattering

cross section is mostly determined by its roughness spec-

trum and, in particular, by the surface slope spectrum for

GNSS-R. Smaller capillary waves are largely forced by

the local winds, since their shorter wavelengths respond

more quickly to the forcing and tend to dissipate rapidly as

they propagate. Longer wavelengths (i.e., swell) can take

significantly longer to develop and can propagate hun-

dreds to thousands of kilometers and so are forced by a

variety of environmental factors, both local and distant,

depending on the past history of the wind field and other

forcing parameters. The off-nadir measurement geometry

used by scatterometers is such that the magnitude of the

backscatter cross section is dominated by Bragg reso-

nance with the capillary wave portion of the surface

roughness spectrum. In the case of GNSS-R, on the other

hand, the forward scattering geometry does not support

Bragg resonance and the corresponding scattering cross

section will be sensitive to a wider range of the roughness

spectrum and to surface waves with a wavelength of 50 cm

or greater (Chen-Zhang et al. 2016). As a result, there is

greater sensitivity of GNSS-R measurements to ocean

swell or other, longer, wavelengths that are not directly

forced by the local winds and that are often characterized

through the significantwave height (SWH) (Germain et al.

2004; Clarizia et al. 2009; Marchan-Hernandez et al. 2010;Corresponding author: Maria Paola Clarizia, clarizia@umich.edu
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Zavorotny et al. 2014). This sensitivity can be problematic

for the retrieval of wind speed, since a component of the

variance in the measurements may now be explained by

other, nonlocal, influences.

Any correction to a GNSS-R wind speed retrieval al-

gorithm for the influence of SWH on the measurements

should take into account the fact that the local winds also

have an effect on the SWH, and that the correlation be-

tweenwind speed and SWH is variable (generally weaker

at low wind speeds and stronger at high wind speeds).

One possible way to account for this variable correlation

is by use of a two-dimensional geophysical model func-

tion (GMF) to express the quantity representing the

GNSS-R scattering as a 2D function of both wind speed

and SWH. A robust 2D GMF determination would

however require a significantly larger volume of data,

which is not yet available with the Technology Demon-

stration Satellite-1 [TechDemoSat-1 (TDS-1)].

A Bayesian estimation represents another means of ac-

counting for the variable correlation between wind speed

and SWH, and it ismore easily applicable in this case, since

the joint probability of occurrence of wind speed and SWH

can be adequately characterized through the large existing

archives of datasets from models. The use of Bayesian

approaches for remote sensing retrieval algorithms is well

known (e.g., Pierdicca 2002; Stoffelen and Portabella

2006). Here we present the mathematical framework, im-

plementation, and results of a Bayesian wind speed esti-

mator for GNSS-R. The algorithm is applied to data from

the TDS-1 (Jales and Unwin 2015a,b). The paper is orga-

nized as follows. Section 2 motivates the need for this al-

gorithm by describing the dependence of the wind speed

retrieval error on SWH for a conventional retrieval algo-

rithm. Section 3 presents the mathematical framework of

the Bayesian method. Section 4 describes the algorithm’s

implementation and its application to TDS-1 data, and

characterizes its improvements relative to the conventional

approach. Section 5 summarizes and concludes the paper.

2. Dependence of wind speed retrieval error on
significant wave height

GNSS-R data are typically provided in the form of

delay Doppler maps (DDMs) of scattered GNSS power

as a function of time delay and Doppler shift (Germain

et al. 2004; Gleason et al. 2005, 2006; Clarizia et al. 2009;

Clarizia 2012). DDMs are used to extract observables,

and to estimate wind and waves from them. One of the

observables most correlated with sea surface parameters

is the delay Doppler map average (DDMA), which rep-

resents the average scattering cross section across a spe-

cific area of the glistening zone (Clarizia et al. 2014;

Gleason et al. 2016; Clarizia and Ruf 2016). In the

analysis that follows, we use a modified observable re-

ferred to as the DDMA-to-noise ratio (DNR). TheDNR

is calculated from each DDM by

DNR5
DDMA

N
, (1)

where N is the noise floor, and both DDMA and N are

computed as described in section II.A of Clarizia and

Ruf (2016), with the DDMA derived fromDDMs of the

radar cross section (RCS) and scattering area (Gleason

et al. 2016). Normalization of the scattering cross section

by the noise floor serves to cancel out most receiver gain

fluctuations, which can be significant with TDS-1 mea-

surements (Foti et al. 2015).

The dependence of the DNR observable on SWH is

depicted in Fig. 1 at low wind speeds. Each curve

represents a different wind speed interval.

The figure illustrates the fact that after controlling for

wind speed, there remain significant variations in the

measurements that are explained by SWH. If left un-

corrected by a wind speed retrieval algorithm, this will

produce errors in the wind speed, with higher SWH

values tending to bias the retrievals toward erroneously

high wind speed values. The sensitivity to SWH can be

seen to decrease with increasing wind speed.

The sensitivity of a wind speed retrieval algorithm to

SWH can be characterized by considering the dependence

of its error on SWH. Specifically, a population of retrieved

winds is compared to ground truth values of wind speed,

their difference is regressed against coincident ground truth

values of SWH, and the slope of a linear regression is a

measure of the dependence. A large slope indicates that

SWH has a strong impact on wind retrieval error. A slope

of zero indicates that SWHhas no impact on the error. This

characterization was performed using a conventional re-

trieval algorithm applied to theTDS-1measurements. This

algorithm is explained in detail later on in section 3b (and is

illustrated in Fig. 4). The approach is the same as the al-

gorithms in Foti et al. (2015) and Clarizia and Ruf (2016).

The resulting slope of the linear regression is shown in

Fig. 2 versus wind speed. The slope is largest at low wind

speeds and tends toward zero at higher values (scatterplots

of the populations of wind speed error and SWH, from

which the slopes were derived, are shown in Fig. 6).

3. Bayesian estimator

Here we illustrate a Bayesian wind retrieval approach

that suppresses the dependence of the retrieval error on

SWH at low wind speeds. We first outline its mathe-

matical derivation, followed by a description of the a

priori statistics used in the algorithm, and finally the

determination of two parameters—a scale parameter
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and a correlation parameter—that are necessary to im-

plement the algorithm.

a. Derivation of Bayesian estimator

Given the joint random variables x and y, Bayes’s

theorem states that

p(x j y) 5 p(y j x)p(x)
p(y)

, (2)

where p(x j y) is the conditional probability of x given a

particular value of y; p(y j x) is the conditional probability
of y given a particular value of x; p(x) is the probability of

x, independent of the value of y; and p(y) is the proba-

bility of y, independent of the value of x. For many re-

mote sensing problems, Bayesian estimators treat x as

the geophysical state to be estimated; y as the remote

sensing measurement; the expected value of p(y j x) as

the error-free measurement of y predicted by a forward

model; the random component of p(y j x) as the mea-

surement noise; and p(x) as the prior distribution of x,

independent of the measurement (e.g., due to the cli-

matology of that geophysical variable). In practice, p(y) is

often not known or needed because only the numerator

on the right-hand side of Eq. (2) depends on x, and the

denominator serves only to normalize the right-hand side

when viewed as a probability density function (pdf) in x.

For GNSS-R remote sensing of ocean surface

scattering, a measurement observable o is used to

estimate the wind speed u. In addition, information

about the sea state—specifically the SWH—is known

from model predictions prior to the wind speed esti-

mate. In this case, Bayes’s theorem can be written as

p(u j s,o) } p(s, o j u)p(u) , (3)

where s 5 SWH and the proportionality is indicated

because the denominator in Eq. (2) is not expressed.

The expression on the left-hand side in Eq. (3) can be

viewed as a posterior pdf for u given a measurement of

o and prior knowledge of SWH. An estimate of the

FIG. 1. DNR observable vs SWH, for different 1m s21 wind speed intervals, centered at the

values indicated in the legend. The DNR is calculated from all the available TDS-1 DDMs

over the period from September 2014 to March 2015, acquired with a receiver antenna gain

at the specular point higher than 12 dBi, with an SNR higher than 1 (see section 3b for details).

The computed DNR values for each wind speed bin are averaged within bins of 1-m SWH,

and the averaged values are reported as a function of the SWH.

FIG. 2. Slope of the best-fit linear regression curve, calculated for

each wind speed from the retrieval error data vs SWH.
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wind speed can be made in one of two ways: 1) The

maximum likelihood (ML) estimate is that value of u,

which maximizes the posterior pdf of u; or 2) the ex-

pected value (EV) estimate is the mean value of the

posterior pdf of u. The ML wind speed estimated from

(s, o) is given by

û
ML

5 max
u

fp(u j s,o)g. (4)

The EV wind speed estimated from (s, o) is given by

û
EV

5
�
all u

u p(u j s,o)

�
all u

p(u j s,o) . (5)

If the observable and SWH are modeled as joint

Gaussian distributed random variables, then the condi-

tional pdf on the right-hand side of Eq. (3) can be sep-

arated into three components: one due to s, one due to o,

and one representing the correlation between variations

in s and o. This decomposition has the form

p(s, o j u)5 1

2ps
s
s
o

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p exp

"
2

(s2 s)2

2(12 r2)s2
s

#
exp

"
2

(o2 o)2

2(12 r2)s2
o

#
exp

�
r(s2 s)(o2 o)

(12 r2)s
s
s
o

�
, (6)

where s and o are the mean values; ss and so are the

standard deviations of s and o, respectively; and r is the

correlation between their variations. Although this

decomposition would be strictly valid only for joint

Gaussian variables, we use here an approximation by

symbolically writing it as

p(s, o j u)} p(s j u)p(o j u) exp
�
r(s2 s)(o2 o)

(12 r2)s
s
s
o

�
, (7)

and by allowing the conditional sea-state-only pdf p(s ju)
not to be necessarily Gaussian. Thus, we estimate p(s ju)
empirically from a large population of joint occurrences

of SWH and wind speed, which is illustrated in detail in

section 3b. Note that it is, in general, not Gaussian dis-

tributed, so the Gaussian form assumed in Eq. (6) is a

simplification. The conditional observable-only pdf p(o ju)
can be modeled assuming a known geophysical model

function g(u) that relates the observable to the wind speed

[i.e., o 5 g(u)], together with an error model for the mea-

surement noise. If the error in the observable is assumed to

be additive Gaussian noise, then the pdf can be written as

p(o j u)} exp

(
2
[o2 g(u)]2

2(12 r2)s2
o

)
, (8)

where so is the standard deviation of the measurement

noise.

The coupling term in Eq. (6), which results from the

correlation between variations in s and o, can be rewritten

to explicitly emphasize its dependence on wind speed, as

exp

�
r(s2 s)(o2 o)

(12 r2)s
s
s
o

�
5 exp

�
r(s2 sj

u
)[o2 g(u)]

(12 r2)s
s
j
u
s
o

�
, (9)

where the mean and standard deviation of s given u are

found by

sj
u
5
�
all s

[s p(s j u)]

�
all s

p(s j u) (10)

and

s
s
j
u
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
all s

[(s2 sj
u
)2p(s j u)]

�
all s

p(s j u)

vuuuut , (11)

respectively. The prior wind speed pdf p(u) is known to be

well approximated globally by a Rayleigh distribution

with a mean value of ;7ms21. Using this Rayleigh dis-

tribution with the Bayesian estimator is one option, but

doing so will tend to push the estimate toward the mean

value. Another option is to use the so-called improper

prior and assume p(u) to be a uniform distribution. This

allows the estimator to rely more on the measured ob-

servable and less on the prior behavior of the wind speed

distribution. It is, for example, a more reasonable prior

to assume for retrieval in anomalously high wind speed

conditions such as hurricanes.

The posterior pdf of u can be finally written as

p(u j s,o)} p(s j u) exp
(
2
[o2 g(u)]2

2(12 r2)s2
o

)
exp

8<
:
r(s2 sju)[o2 g(u)]

(12 r2)s
s
j
u
s
o

9=
;p(u) . (12)
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b. Characterization of conditional statistic p(s ju)
Implementation of the Bayesian estimator requires:

1) estimation of p(s ju), and the mean and standard

deviation of s given u;

2) determination of g(u);

3) estimation of so.

The conditional pdf p(s ju) is estimated using a large

historical archive of SWHandwind speed values, output

from the WAVEWATCH III (WW3) model (Tolman

2009). The WW3 model outputs used in this study were

provided by the French Research Institute for Exploi-

tation of the Sea [Institut Français de Recherche pour

l’Exploitation de la Mer (IFREMER)], and are gener-

ated for the entire year 2007 using the Climate System

Forecast Reanalysis (CSFR) input wind forcing. The

dataset is freely available on the IFREMER FTP site

(ftp://ftp.ifremer.fr). The population is large enough to

allow for an empirical derivation of p(s ju), using wind

speed and SWH steps of 0.1m s21 and 0.1m, re-

spectively. Examples of the empirical p(s ju) are illus-

trated in Fig. 3 for different wind speeds. The departure

of these pdfs from Gaussianity is particularly evident at

low wind speeds. At very low winds, the pdfs have a

bimodal behavior, suggesting a low SWH component

due to the local wind and a higher SWH component due

to sustained waves that have reached the area from

elsewhere and were not generated by the local wind.

The mean ssju and standard deviation ssju are com-

puted using SWH values obtained from WW3 that are

collocated with the TDS-1 measurements.

Determination of the GMF is carried out using

the TDS-1 spaceborne GNSS-R dataset, version 0.3, ac-

quired over the ocean, in the period ranging from Sep-

tember 2014 to March 2015 (Jales and Unwin 2015a,b).

The same dataset has been used for scatterometric pur-

poses in Foti et al. (2015) and for altimetric purposes in

Clarizia and Ruf (2016). The dataset is in the form of the

DDMof scattered power, accompanied by metadata that

contain the time, location, geometry of the acquisition,

and the gain of the receiver antenna at the specular

point. A detailed description of the dataset is contained

in Clarizia and Ruf (2016). A quality filter is applied to

the data by selecting only samples acquired with an

antenna gain at the specular point that is higher than

12 dBi, and with an SNR higher than 1, such that the

signal power is at least as strong as the noise power.

These thresholds are a trade-off between the need to

retain enough samples for the analysis and the desire to

discard noisy data.

ASCAT-retrieved winds collocated with the GNSS-R

acquisitions are used in this study as ground truth winds

(O&SI SAF Project Team 2016). Following the ap-

proach outlined in Clarizia andRuf (2016), the dataset is

randomly divided into training and test halves. The

training dataset is used to derive a GMF, g(u), as an

analytical function that best fits the observable as a

function of ground truth wind speed.AGMFof the form

o5 g(u)5 a(ub)1 c , (13)

where o is the DNR observable, u is the wind speed, and

a, b, and c are best-fit model parameters, has been found

to provide a satisfactory fit. Figure 4a shows a density

plot in logarithmic scale of the DNR data versus collo-

cated wind speed, with the GMF in magenta, while

Fig. 4b shows a density plot of true versus retrieved

winds. A fairly large number of samples sits in the

bottom-left corner of Fig. 4a, characterized by low ob-

servable values and low wind speed values. The anom-

alous behavior of these samples is not due to noise in the

data, since a noise filter has been applied; hence, it is

probably caused by a roughness higher than that in-

dicated by the collocated wind speed, due to the pres-

ence of waves or swell. The retrieved wind for these

samples is considerably higher than the true wind, and

this is visible in the scatterplot of Fig. 4b.

Estimation of s0 is done with a large population of

simulated samples, generated by the Cyclone GNSS

(CYGNSS) end-to-end simulator (E2ES) using input

winds from the nature run model (O’Brien 2014; Ruf

et al. 2016). These are the same samples used to perform

the analysis in Clarizia andRuf (2016).We choose not to

use TDS-1 data for this estimation because the TDS-1

population size is not sufficient to obtain a robust sta-

tistical characterization. The E2ES-derived model is

scaled to represent the standard deviation assumed for

the TDS-1 measurements, as follows:

FIG. 3. Conditional pdfs p(s j u) for different values of the wind

speed u10 indicated in the legend. Note the shift of the pdfs toward

higher SWH values for increasing wind speed.
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s
0
(u,G)5as

e
(u,G), (14)

where s0 is the standard deviation of the TDS-1 DNR,

se is the standard deviation of the DDMA derived from

nature run data, and it is understood that both of the

standard deviations depend on the wind speed u and on

the gain of the receive antenna G at the specular point.

The term a is a scale parameter accounting for differ-

ences between TDS-1 and E2ES noise levels.

c. Determination of scale and correlation parameter

The scale parameter a and the correlation param-

eter r in Eq. (5) are needed in order to implement the

Bayesian estimator. We estimate their values by

minimizing figures of merit (FoM), which repre-

sent improvements we want to achieve by adopting

the Bayesian estimator. Specifically, we define an

FoM1 for the slopes and an FoM2 for the standard

deviation as

FoM15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

ui51

(qi)2

s
, (15)

FoM25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

si51

(si)2

s
, (16)

where qi is the slope of the linear function that best fits

the retrieval errors versus the SWH, for the ith wind

interval. The slope qi can be expressed as

qi 5

L
i�

l

xli�
l

yli

L
i�

l

(xli)
2 2

�
�
l

yli

�2
, (17)

where Li is the number of samples within the ith wind

interval, xli is the lth SWH value and yli is the lth retrieval

error value, and the summations are performed over all

the Li samples of the ith wind interval.

FIG. 5. (left) Contour plot of slope FoM as a function of correlation parameter and scale parameter. (right) Contour

plot of standard deviation FoM as a function of the same parameters.

FIG. 4. (a) Density plot in log scale of TDS-1DNR vs ASCAT collocated wind speed for the training dataset, with

GMF illustrated as a magenta curve. The black stars represent the DNRmedian value within each wind speed bin of

the density plot. The best-fit coefficients for Eq. (13) are a5 0.79, b520.38, and c520.01. The low-DNR/lowwind

samples are located in the bottom-left corner of the cluster of points. (b) Density plot in log scale of true ASCAT

winds vs retrieved winds. The low DNR/low wind samples are responsible for the large percentage of low true

wind/high retrieved wind points located in the top-left zone of the density plot.
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Term si is the standard deviation of the retrieval error

for the ith wind interval, calculated as

si 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
i

�
l

(yli 2m
i
)2

s
, (18)

where mi is the mean retrieval error for the ith wind

interval. FoM1 and FoM2 are computed for values of

the scale parameter ranging from 0.5 to 10 with a step

of 0.5, and for the correlation parameter ranging

from 21 to 0 with a step of 0.1. Note that the corre-

lation parameter should be negative, since an in-

crease in the SWH s corresponds to a decrease in the

DNR observable and vice versa. Figure 5 illustrates

the dependence of FoM1 and FoM2 on a and r. A

region of minima for both figures of merit can be

identified, corresponding to 2 , a , 4 and 20.7 ,
r , 20.5. We select midpoint values of a 5 3.5 and

r 5 20.6, bearing in mind that other values for

a and r within the region of minimal values produce

similar results. Note also that the selected value for

r is comparable to the empirical correlation co-

efficient calculated between the collocated TDS-1

SWH and the DNR observable, which was found to

equal 20.4 for TDS-1 data with receive gain higher

than 12 dBi and SNR . 1.

4. Results and discussion

Both the maximum likelihood [Eq. (4)] and expected

value [Eq. (5)] versions of the Bayesian estimator have

been implemented, with p(u j s, o) computed using Eqs.

(12)–(14), and p(s ju), ssju, and ssju derived as described

in section 3b. Here we show results based on the EV

approach, since it exhibited superior performance

compared to the ML approach. The Bayesian EV-

retrieved winds are compared with the winds retrieved

by inverting the forward model expressed in Eq. (13),

referred to as the GMF approach.

Initial results for the EV and GMF approaches at low

wind speeds are shown in Fig. 6, which plots the retrieval

error versus true wind speed. The performance of the

GMF approach is degraded by the sensitivity of the

observable to both wind speed and the component of

SWH variability that is uncorrelated with wind speed.

The dependence of the retrieval error on SWH is sig-

nificantly reduced in the case of the Bayesian EV ap-

proach. Note that while the Bayesian approach is

superior for winds below 5ms21, a retrieval bias is

present at higher winds, which increases with increasing

true winds. One possible reason for the bias is that the

Bayesian estimator tends to force the results toward

the a priori statistics at all wind regimes and while this is

FIG. 6. Wind retrieval error (true minus retrieved) as a function

of SWH for different 1m s21 wind intervals from 0 to 9m s21. (left)

Errors obtained from the standardGMF approach, where no SWH

correction is applied. (right) Errors for the Bayesian SWH

correction.
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desirable at low winds due to the wave contamination,

the wave influence at high winds is much smaller and the

wind speed is better determined by the GNSS-R

observable only.

Figure 6 shows the retrieval error as a function of

SWH over different wind intervals, for the GMF (left)

and the Bayesian (right) approaches. A reduction in the

scattering of the retrieval error and in the presence of

outliers is evident in the Bayesian case for winds up to

6m s21. For winds above 6m s21, the Bayesian algo-

rithm still shows a reduction in retrieval error scatter,

but the retrieval bias noted earlier grows larger. Tables 1

and 2 quantitatively summarize the performances

through the slope, the standard deviation FoMs, and the

retrieval bias. Wind speed intervals above 9m s21 are

not reported, since the population of samples is low and

the SWH dependence is small.

The reduction of the retrieval error scattering in Fig. 6

is reflected in the standard deviation FoM, which re-

duces considerably for the Bayesian case, where the

decrease ranges from 18% to 51%. A reduction in the

slope FoM is also noticeable, implying a lower de-

pendence of retrieval error on the SWH. Note that the

slope FoM is usually negative, consistent with the ten-

dency of the retrieval error to increase for increasing

SWH. The bias in the Bayesian approach starts to in-

crease for winds higher than 5m s21, and it is always

positive, evidence that the winds are underestimated

with theBayesianmethod.However, the SWH influence

on the DNR observable tends to disappear for winds

above 5m s21, as highlighted in Fig. 1, suggesting that a

Bayesian correction is not needed in this wind

speed regime.

5. Conclusions

We have presented a Bayesian approach to the re-

trieval of wind speeds from GNSS-R measurements

that exploits knowledge of the collocated SWH and

uses a priori SWH statistics to compensate for the

overestimation of the wind speed at low wind regimes,

caused by the presence of long-wave swell. The mathe-

matical framework of the Bayesian SWH correction

builds upon 1) the generation of the empirical condi-

tional sea-state-only pdf, using outputs from the WW3

model; 2) the determination of a good enough forward

model that describes the observable as a function

of wind speed; and 3) the determination of the stan-

dard deviation of the measurement noise. The algo-

rithm is applied to spaceborneGNSS-RDDMs acquired

onboard TDS-1, from which the DDMA-to-noise ratio

is calculated and used as observable in the algo-

rithm. The algorithm implementation required the de-

termination of a scale parameter and a correlation

parameter, which were optimized through the minimi-

zation of two figures of merit. The results show a sig-

nificant reduction of the standard deviation of the error

and of its dependence on SWH for the Bayesian ap-

proach, compared to using a conventional inversion of

the forward model. These improvements are evident at

lowwind speeds, which is where the wave contamination

is strongest and the retrieval error is higher. A significant

retrieval bias is present in the Bayesian approach at high

wind speeds, most likely because the prior SWH distri-

bution unduly influences the estimator. However, a

Bayesian correction is not needed in that wind speed

regime. This suggests that a complete retrieval algo-

rithm should consist of a combination of Bayesian esti-

mator at low wind speeds and standard GMF approach

at high wind speeds. The development of such an algo-

rithm and the analysis of its capabilities and possible

limitations will be the object of future work. It will be

carried out using a much larger and well-calibrated

dataset from CYGNSS, and with a much larger pop-

ulation of samples at high wind speeds that should be

available from CYGNSS, as opposed to the limited

dataset fromTDS-1. The larger volume of data expected

from CYGNSS should also support the implementation

TABLE 1. Slope FoM, standard deviation FoM, and retrieval bias

reported for the GMF approach for different wind speed intervals.

No SWH correction

(GMF approach)

Slope

FoM

Std dev FoM

(m s21)

Retrieval

bias (m s21)

0m s21 # u , 1m s21 21.62 2.08 20.72

1m s21 # u , 2m s21 21.26 2.33 20.74

2m s21 # u , 3m s21 21.67 2.76 20.62

3m s21 # u , 4m s21 20.75 2.79 20.46

4m s21 # u , 5m s21 20.89 2.93 21.03

5m s21 # u , 6m s21 20.56 2.67 20.53

6m s21 # u , 7m s21 20.39 2.36 0.12

7m s21 # u , 8m s21 20.55 2.38 0.29

8m s21 # u , 9m s21 21.19 3.13 1.25

TABLE 2. Slope FoM, standard deviation FoM, and retrieval bias

reported for the Bayesian EV approach for different wind speed

intervals.

SWH correction

(Bayesian EV approach)

Slope

FoM

Std dev FoM

(m s21)

Retrieval

bias (m s21)

0m s21 # u , 1m s21 20.96 1.43 20.58

1m s21 # u , 2m s21 20.57 1.54 20.26

2m s21 # u , 3m s21 20.85 1.89 0.10

3m s21 # u , 4m s21 20.13 1.96 0.54

4m s21 # u , 5m s21 20.16 2.18 0.48

5m s21 # u , 6m s21 0.08 1.98 1.15

6m s21 # u , 7m s21 0.25 1.96 1.98

7m s21 # u , 8m s21 20.09 2.02 2.31

8m s21 # u , 9m s21 20.39 2.53 3.22
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of other, alternative, methods to account for the SWH

dependence (e.g., the 2D GMF approach mentioned in

section 1) and to allow for a comparison of the results

from these methods with the Bayesian wind speed

estimator.
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