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Fig. 5. Individual realization of the bimodal pdf applied for the duty cycle
of individual RFI sources. The fraction of low duty-cycle to high duty-cycle is
a variable parameter with the above plot indicating 50% of sources with low
duty-cycle.

[23] used a pdf of a thermal-noise source with additive pulse-
sinusoidal RFI obtained from [27]. It is dif�cult to obtain an
elegant closed-form expression for such a pdf. Instead, the
probability density is calculated using the characteristic func-
tion of the signal. The probability density of (5) is calculated in
the Appendix and shown as follows:

f (t) = F Š1

�

eŠ � 2 u 2
2

N�

i =1

(di J0(Ai u) + (1 + di ))

�

(8)

whereJ0 is a Bessel function of the zeroth order,Ai is the
amplitude of thei th RFI source,di is the duty cycle of thei th
RFI source,� is the standard deviation of a normally distributed
function, andF Š1[. . .] represents the inverse Fourier transform
operation with respect tou.

Fig. 6 shows the pdf of a Gaussian signal corrupted by a
single RFI source and multisource RFI. Note that these dis-
tributions will, in general, depend on various parameters such
as mean power and duty-cycle fraction. Due to central-limit
conditions, the pdf of a multisource corrupted thermal signal
approaches a bell-shaped curve, similar to the uncorrupted orig-
inal signal. This property is expected to impact the performance
of the kurtosis detection algorithm with regard to detectability
of RFI, which is investigated in the next section.

IV. K URTOSISPERFORMANCE

The performance of the kurtosis detection algorithm can be
assessed when multiple RFI sources are present within the
antenna footprint. In order to account for the random distribu-
tion of duty cycle and amplitude of the RFI sources, Monte
Carlo simulations were performed, and the average kurtosis
and power were determined in each case. The total power
contributed by all RFI sources is kept constant as the number
of sources increases. An example is considered in which the
total power level of RFI is nearly 100 times the NE� T. Fig. 7
shows the value of the kurtosis ratio with respect to the num-

Fig. 6. PDF of RFI with thermal noise. The blue curve is for a single RFI
source, and the green is for multiple sources, i.e., 50 sources, all of which have
low duty-cycle. The relative RFI power of the different types of RFI sources is
approximately ten times the thermal noise.

Fig. 7. Mean value of kurtosis as a function of the number of sources (1–100)
and fraction of low duty-cycle sources. The overall power remains the same as
the number of sources increases(orange� kurtosis= 3) .

ber of sources and fraction of low duty-cycle sources within
the antenna footprint. The orange region of the contour plot
represents a kurtosis of approximately three, meaning that the
amplitude pdf of the signal is either similar to Gaussian or, in
some cases, a non-Gaussian pdf resulting in a kurtosis value of
three (e.g., single RFI source of 50% duty cycle). The detection
algorithm interprets this as a signal of geophysical origin, so
if this is in fact RFI, it constitutes the blind-spot region for
the detection algorithm. As can be seen in Fig. 7, with a large
number of sources, the kurtosis becomes Gaussian-like. RFI
sources with low duty-cycle sources converge toward three at a
much slower rate than RFI sources with even a small fraction of
CW sources. Kurtosis still maintains superior detectability for
low duty-cycle sources, but the performance degrades rapidly
due to the inclusion of communication-type CW signals. This
indicates that the fraction of high duty-cycle sources dominates
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Fig. 9. Block diagram of Multisource RFI experimental setup.

Fig. 10. Experimental results indicating excess kurtosis versus antennaT bs in Kelvin (scaled assuming RFI-free thermal emission ofTant = 300 K). The
dashed lines represent the+ / Š 3� NE� K of kurtosis. The colors represent any RFI corruption due to different numbers of sources. The error bars represent the
1 Š � con�dence in the �t (number of sources: red= 1 , cyan= 3 , purple= 5 , green= 7 , blue= 9 , and black= 11 ).

Analog signal output from the AWG (with a baseband band-
width of 500 MHz) was then up converted to a 1.413 GHz
center frequency and �ltered between 1.4 and 1.424 GHz. The
signal was then introduced into the University of Michigan kur-
tosis digital detector (KDD) RF stage and digital back end [29].
In summary, KDD subsamples the RF input signal at a rate of
279.26 MHz, after which digital signal processing is performed,
including detection of the signal’s kurtosis. For purposes of this
experiment, band-limited Gaussian noise covered the spectral
passband, and simulated RFI was uniformly distributed across
the passband.

Fig. 10 shows results from the laboratory experiment, in
which a background thermal source is corrupted with additive
RFI. The overall relative power of the RFI was kept the same for
a varying number of sources. The plot indicates excess kurtosis

(= kurtosisŠ 3) versus RFI in scaled brightness-temperature
units, based on a 300 K clean thermal background. All of the
RFI sources have a high duty-cycle, which is why the excess
kurtosis is below zero. Simulations from previous sections
indicate that high duty-cycle sources have an immediate impact
on kurtosis as the number of sources increases. As a result,
the RFI sources with high duty-cycle were input through the
AWG for veri�cation purposes. The dashed lines represent the
noise margin of kurtosis (i.e.,3� NE� K ) for this system. Any
integration period with excess kurtosis between the dashed
lines has undetectable RFI. The colors in Fig. 10 represent
different data points with the same number of RFI sources. For
example, red represents data points with a single RFI source,
and black represents 11 RFI sources. The other colors repre-
sent intermediate numbers of RFI sources. The experimental
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function of a normal pdf is well known [30] and is shown as
follows:

	 n (u) = eŠ � 2 u 2
2 (9)

where � is the standard deviation of a normally distributed
function. The characteristic function of a pulsed sinusoid can
be found as follows:
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whereJ0 is a Bessel function of the zeroth order,Ai is the
amplitude of the RFI source,
 l is the radian frequency,� l is the
phase shift,t0 represents the center of the on pulse of the duty
cycle,wi is the width of the on pulse, andT is the integration
period. The ratio(di = wi /T ) represents the duty cycle of the
RFI source.

The total characteristic function is obtained by taking the
product of (9) and (10) and is given by

	 T (u) = 	 n (u)
N�

i =1

	 psi (u)i (11)

whereN is the total number of RFI sources. The probability
density functionf (t) is the inverse Fourier transform of the
characteristic function earlier.
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